

Lecture 6

Assembly Language
Requirements

Text: Chapter 4

Computers and Programming

6.1

Assembly Language

Assembly language allows the programmer to write
machine instructions symbolically rather than in binary.

There is no need to

• remember complicated binary instruction formats
• calculate numeric offsets for variables

It is rare to need to program in assembly language
because high-level language compilers generate fairly
efficient code and are flexible.

Occasionally assembly language is used because it
• provides more control over hardware
• generates smaller executable modules
• generates programs that execute faster

Since all programs eventually end up in binary, there is no
reason why the two can’t be mixed, reserving assembly
language for special needs:

Source
Program

Assembly
Source

Program

Executable
Module
.EXE

Linker

Assembler

Compiler

Computer Science 141

6.2

Basics of Assembly Language

 TASM (Turbo Assembler)
 MASM (Microsoft Assembler)

Comments

Anything following a semicolon (‘;’) is considered a
comment and is ignored by the assembler.

There are three kinds of comments, and all of them are
required in programs written for this course:

Abstract

A paragraph at the beginning of your program
where you include your name, course, section, and
a description of what the program does.

1. ; Charles Babbage
2. ; Computer Science 141 KA
3. ;
4. ; Calculate the gross pay and
5. ; bonus less taxes for all …

Section Comments

A “section” of your program is somewhat hard to
define, but it is where a group of instructions solve
a particular part of the problem.

18. ; Calculate the gross pay by
19. ; hours worked times rate, and
20. ; add overtime at 1.5 the rate…

Computers and Programming

6.3

Line comments
Assembly language statements are terse and
cryptic, and require explanation so the reader
doesn’t spend a lot of time wondering why you are
doing something.

Every statement should have a comment
describing why it is in the program. (Not what it
does!)

25. MOV AL,HOURS ;get the hours
26. MUL RATE ;times the rate

NOT:

25. MOV AL,HOURS ;put hours in AL
26. MUL RATE ;multiply by RATE

Use white space to the reader’s benefit… remember

Someone else is going to read your program!

Computer Science 141

6.4

Reserved Words

Certain words may only be used by the assembler

• instructions MOV, ADD
• directives END, SEGMENT
• operators FAR, SIZE
• functions @Data, @Model

 (They are listed in Appendix C of the textbook.)

Identifiers

 Variable names (to refer to data) and labels (to refer
to instructions). May contain up to 31 letters, numbers and
special characters (? _ $ @ .). The first letter must be
alphabetic or a special character (except ‘.’, and avoid
starting with ‘@’). There is no distinction between upper
and lower case, so CAT is the same as Cat is the same as
cat.

 CAT
 R2D2
 Gross_Salary_Minus_Taxes
 $alary

Computers and Programming

6.5

Statements

There are two types of statements:

 Symbolic Machine Instructions

The actual machine instructions that are
translated into binary and executed by the CPU.

 MOV AL,RATE

 Directives

Statements which tell the assembler to do
something while the program is being translated
into binary.

 RATE DW 8

This tells the assembler to Define a Word in
memory, put the number 8 in it and call it RATE.

Each statement has four FIELDS

Identifier Operation Operands Comment
RATE DW 8 ;$8 per hour
HOURS DB 40 ;40 hrs/wk
AGAIN ADD AX,RATE ;get rate
 PAGE 60,132
 TITLE FIRST My First Program

Computer Science 141

6.6

Other important directives

The SEGMENT directive

Inform the assembler that a new segment is being written
(for .EXE programs), how it is to be aligned, how it may be
combined with other segments, and how it may be linked.

name SEGMENT align combine ‘class’

MyStack SEGMENT PARA STACK ‘Stack’
…
…
…
MyStack ENDS ;this directive ends
 ;the segment

The ASSUME directive

You must tell the assembler the purpose of each segment
in the program so that it will use the correct segment
registers (i.e., use the CS register with your code
segment).

 ASSUME SS:MyStack,CS:MyCode,DS:MyData

The END directive

Placed at the end of the program. If the program is to be
executed, its operand is the name of the main program
procedure as defined with the PROC directive.

Computers and Programming

6.7

 page 60,132
 TITLE P04ASM1(EXE)Move and add operations

; ---
STACKSG SEGMENT PARA STACK ’Stack’
 DW 32 DUP(0)
STACKSG ENDS
; --
DATASG SEGMENT PARA ’Data’
FLDA DW 250
FLDB DW 125
FLDC DW ?
DATASG ENDS
; --
CODESG SEGMENT PARA ’Code’
BEGIN PROC FAR
 ASSUME SS:STACKSG,DS:DATASG,CS:CODESG
 MOV AX,DATASG ;Set address of DATASG
 MOV DS,AX ; in DS register

 MOV AX,FLDA ;Move 0250 to AX
 ADD AX,FLDB ;Add 0125 to AX
 MOV FLDC,AX ;Store sum in FLDC
 MOV AX,4C00H ;Exit to DOS
 INT 21H
BEGIN ENDP ;End of procedure
CODESG ENDS ;End of segment
 END BEGIN ;End of program

Example of complete .EXE program

Notice that program termination is done by an interrupt:
 MOV AH,4Ch ;termination code
 MOV AL,0 ;return code 0
 INT 21h ;exit to DOS

Computer Science 141

6.8

Simplified Segment Directives

.MODEL how many code/data segments
.STACK [size] define the stack [and its size]
.DATA declare the DATA segment
.CODE [name] declare the CODE segment

Model # code segments # data segments
TINY used only for .COM programs
SMALL 1 1
MEDIUM more than 1 1
COMPACT 1 more than 1
LARGE more than 1 more than 1

 page 60,132
TITLE P04ASM2 (EXE) Move and add operations
;---
 .MODEL SMALL
 .STACK 64 ;Define stack
 .DATA ;Define data
FLDA DW 250
FLDB DW 125
FLDC DW ?
;--
 .CODE ;Define code segment
BEGIN PROC FAR
 MOV AX,@data ;Set address of DATASG
 MOV DS,AX ; in DS register
 MOV AX,FLDA ;Move 0250 to AX
 ADD AX,FLDB ;Add 0125 to AX
 MOV FLDC,AX ;Store sum in FLDC
 MOV AX,4C00H ;Exit to DOS
 INT 21H
BEGIN ENDP ;End of procedure
 END BEGIN ;End of program

Computers and Programming

6.9

DATA Definition

Name

 a valid unique identifier.

Directive

 DB Define a byte
 DW Define a word
 DD Define a doubleword

Expression

 ? indicates no initial value
 DW ?
 a single value
 DW 25
 DB 12h
 DW 10010100b
 DB “Queens College’s Best”
 DB ‘Computer Science’’s finest’
 a list of values
 DW 1,2,3,4,5,6,7
 a repeated value
 DW 10 DUP(0) ;defines 10 zeros

[Name] DIRECTIVE expression

Computer Science 141

6.10

Exercises - Lecture 6

1. Write an .EXE file in assembly language which contains the following:

 a) A STACK segment which defines a stack of 64 bytes.
 b) A DATA segment with the following identifiers:

 "PageCount", a word with an initial value of 1.
 "Heading", a string (sequence of bytes) with the value "Computer Science 141"
 "GradeList", a sequence of 20 bytes which all contain zero.

 c) A CODE segment which

 Puts the value of "PageCount" into the AX register
 Puts the first byte of the "GradeList" into the CL register.

